Use of structural soil as a method for increasing flood resilience in Praga Północ in Warsaw



Abstrakt

Celem dociekań jest wykazanie skuteczności nieanalizowanych dotąd właściwości zastosowania podłoża strukturalnego do zwiększenia pojemności retencyjnej. Sposób przeprowadzenia badań obejmuje: przeliczenie powierzchni poszczególnych powierzchni występujących na terenie opracowania, przeliczenie objętości potencjalnego podłoża strukturalnego pod wszystkimi obszarami utwardzonymi (poza nawierzchniami asfaltowymi jezdni) przy uwzględnieniu porowatości tego podłoża, co pozwala na uzyskanie wartości objętości, w którą mogą wypełnić wody deszczowe. Przyjmując parametry maksymalnego deszczu nawalnego notowanego dla zachodniej części Warszawy (stacja opadowa na Bielanach opad nawalny z 2013 roku – 38,9 mm, czas trwania 1,5 h), obliczono, że na analizowany obszar spadłoby łącznie około 6502 m3 deszczu. Przy założeniu, że pod chodnikami i dziedzińcami znajduje się podłoże strukturalne o miąższości 10 cm i porowatości wynoszącej średnio 30%, uzyskano by ponad 2218,5 m3. Wnioski sprowadzają się więc do stwierdzenia, że podłoże strukturalne zastosowane pod nawierzchniami pieszymi i dziedzińcami budynków znacząco się poprawiło. Retencja wód opadowych na analizowanym fragmencie dzielnicy Praga Północ w Warszawie może znacząco zredukować lokalne podtopienia.


Słowa kluczowe

podłoże strukturalne; rezyliencja powodziowa; retencja wodna

ABBOTT C.L., COMINO-MATEOS L. 2003: In-Situ hydraulic performance of a Permeable Pavement Sustainable Urban Drainage System. Water Environ. J. 17 (3): 187–190.

America’s Premier Paver n.d.: Structural Soil. Retrieved from: http://www.americaspremierpaver.com/alliedproducts/structural_soil.htm [access 12.11.2018].

Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, European Communities 2003: Applying Compost Benefits and Needs, 2001: Seminar Proceedings, 22–23.11.2011 Brussels. Retrieved from: http://ec.europa.eu/environment/archives/waste/pdf_comments/040119_proceedings.pdf [12.11.2018].

BASSUK N., GRABOSKY J., TROWBRIDGE P., URBAN J. 1996: Structural Soil: A innovative medium under pavement that improves street tree vigor. American Society of Landscape Architects Annual Meeting. Retrieved from: http://www.hort.cornell.edu/uhi/outreach/csc/article.html [access 12.11.2018].

BEATLEY T. 2008: Planning for Sustainability in European Cities: A Review of practice in Leading Cities. The Sustainable Urban Development Reader. Routledge, London.

BEDNAREK R., PRUSINKIEWICZ Z. 1997: Geografia gleb [Soil geography]. 4th edn. Wydawnictwo Naukowe PWN, Warszawa.

BEDNAREK R., SKIBA S. 2015: Geografia gleb świata [Soil geography of the world]. In: A. Mocek (Ed.), Gleboznawstwo. 1st edn. Wydawnictwo Naukowe PWN, Warszawa: 405–406.

CHARMAN P.E.V., MURPHY B.W. 1998: Soils: Their Properties and Management. 5th edn. Oxford University Press, Melbourne.

City of Copenhagen 2012: Cloudburst Management Plan. Retrieved from: https://en.klimatilpasning.dk/media/665626/cph_-_cloudburst_management_plan.pdf [access 12.11.2018].

CYGANECKA A., MAJSZCZYK I. 2011: Sewage Sludge Treatment in Warsaw – Current Situation in Poland. In: K.J. Thomé-Kozmiensky, L. Pelloni (Eds.), Waste Management. Vol. 2. Waste Management, Recycling, Composting, Fermentation, Mechanical-Biological Treatment, Energy Recovery from Waste, Sewage Sludge Treatment. TK Verlag Karl Tomé-Kozmiensky, Neuruppin: 700–712.

DAY S.D., DICKINSON S.B. (Eds.) 2008: Managing Stormwater for Urban Sustainability using Trees and Structural Soils. Virginia Polytechnic Institute and State University, Blacksburg, VA.

EASTON Z., BOCK E. 2016: Soil and Soil Water Relationships. Virginia Cooperative Extension, Virginia Tech, Virginia State University, St. Petersburg, VA.

EMBRÉN B. 2015: Plant Beds in Stockholm City Trees and Stormwater Management. The Stockholm Solution Street Department, Stockholm.

EMBRÉN B. 2016: Planting Urban Trees with Biochar. tBJ: 44–47. Retrieved from: www.biochar-journal.org/en/ct/77 [access 12.11.2018].

EMBRÉN B., ALVEM B-M., STÅL Ö., ORVESTEN A. 2009: Planting Beds in the City of Stockholm. A Handbook. Stockholm.

FLETCHER T., SHUSTER W., HUNT W., ASHLEY R., BUTLER D., ARTHUR S., TROWSDALE S., BARRAUD S., SEMADENI-DAVIES A., BERTRANDKRAJEWSKI J-L., MIKKELSEN P.S., RIVARD G., UHL M., DAGENAIS D., VIKLANDER M. 2015: SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water J. 12 (7): 525–542.

Fundacja Sędzimira 2014: Duże plusy małej retencji [The big advantages of small retention]. Retrieved from: https://uslugiekosystemow.pl/2014/01/23/duze-plusymalej-retencji [access 12.11.2018].

FUNDERNURG E. 2001: What Does Organic Matter Do in Soil? Noble News and Views, August. Retrieved from: https://www.noble.org/news/publications/ag-news-and-views/2001/august/what-does-organic-matter-do-in-soil [access 12.11.2018].

GRABOSKY J., BASSUK N. 1996: Testing of structural urban tree soil materials for use under pavement to increase street tree rooting volumes. J. Arboricult. 22 (6): 255–263.

GREY V., LIVESLEY S.J., FLETCHER T.D., SZOTA C. 2018: Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landscape Urban Plan. 178: 122–129.

HAMBLIN A. 1986: The Influences of Soil Structure on Water Movement Crop Root Growth, and Water Uptake. Advan. Agron. 38: 95–158.

HOJNY A. 2018: Warszawa płynie. Zalane ulice, podtopione domy [Warsaw is flowing. Flooded streets, flooded houses]. Super Express. Retrieved from: https://www.se.pl/warszawa/warszawa-plyniezalane-ulice-podtopione-domy-aa-AtX3-wrj9-7XVP.html [access 12.11.2018].

HOLDEN N.M. 1995: Temporal variation in ped shape in an old pasture soil. Catena 24: 1–11.

HOYER J., DICKHAUT W., KRONAWITTER L., WEBER B. 2011: Water Sensitive Urban Design – Principles and Inspiration for Sustainable Stormwater Management in the City of the Future. HafenCity Universität, Hamburg. Retrieved from: http://www.switchurbanwater.eu/outputs/pdfs/W5-1_GEN_MAN_D5.1.5_Manual_on_WSUD.pdf [access 12.11.2018].

HSIEH C-H., DAVIS A.P. 2005: Multiple- -event study of bioretention for treatment of urban storm water runoff. Water Sci. Technol. 51 (3–4): 177–181.

HUET P., MARTIN X., PRIME J-L., FOIN P., LAURAIN C., CANNARD P. 2003: Retour d’expérience des crues de septembre 2002 dans les départements du Gard, de l’Hérault, du Vaucluse, des Bouches-des-Rhône, de l’Ardèche et de la Drôme. Rapport. Inspection Generale De L’environnement, Paris.

Instytut Meteorologii i Gospodarki Wodnej – PIB 2013: Warunki termiczno-opadowe na obszarze Warszawy w 2012 r. oraz w pierwszym i drugim kwartale 2013 r. [Thermal and precipitation conditions in Warsaw in 2012 and in the first and second quarters of 2013]. Warszawa.

KALTER B. 2008: CU-Soil. Amereq, Inc. Retrieved from: http://amereq.com/pages/2/index.htm [access 12.11.2018].

LEEPER G.W., UREN N.C. 1993: Soil Science: An Introduction. 5th edn. University Press, Melbourne.

LING W., SHEN Q., GAO Y., GU X., YANG Z. 2007: Use of bentonite to control the release of copper from contaminated soils. Aust. J. Soil Res. 45 (8): 618–623.

LIVESLEY S.J., McPHERSON E.G., CALFAPIETRA C. 2016: The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 45: 119–124.

McHARG I. 1967: An Ecological Method for Landscape Architecture. Landscape Architecture 57: 105–107.

McHARG I. 1969: Design with Nature. 18th edn. Harvard, New York.

McLAUGHLIN M.J., ZARCINAS B.A., STEVENS D.P., COOK N. 2000: Soil testing for heavy metals. Comm. Soil Sci. Plant Anal. 31 (11–14): 1661–1700.

McPHERSON E.G., NOWAK D., HEISLER G., GRIMMOND S., SOUCH C., GRANT R. 1997: Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosystems 1 (1): 49–61.

MAMEDOV A. 2014: Soil water retention and structure stability as affected by water quality, Euroasian Journal of Soil Science. Retrieved from: http://dergipark.gov.tr/download/article-file/62852 [access 12.11.2018].

Mapa hydrogeologiczna Polski w skali 1:50000 [Hydrogeological map of Poland in 1:50000 scale]. Państwowy Instytut Geologiczny. Retrieved from: https://www.pgi.gov.pl/psh/dane-hydrogeologiczne-psh/947-bazy-danych-hydrogeologiczne/8888-dane-hydrogeologicznemhp.html [access 12.11.2018].

MAZUR F. 2014: Ulewa nad Warszawą. Zalane ulice, podtopiony Centralny [Heavy rain over Warsaw. Flooded streets, flooded Central]. Wyborcza.pl. Retrieved from: http://warszawa.wyborcza.pl/warszawa/1,54420,16462179,Ulewa_nad_Warszawa__Zalane_ulice__podtopiony_Centralny.html [access 12.11.2018].

NIEMCZYNOWICZ J. 1996: Megacities from a Water Perspective. Water International 21 (4): 198–205.

NIMMO J.R. 1997: Modeling structural influences on soil water retention. SSSAJ 61 (3): 712–719.

NORTON B.A., COUTTS A.M., LIVESLEY S.J., HARRIS R.J., HUNTER A.M., WILLIAMS N.S.G. 2015: Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape Urban Plan. 134: 127–138.

OSMAN K.T. 2018: Peat Soils. Management of Soil Problems. Springer, Cham.

PACHEPSKY Y.A., RAWLS W.J. 2003: Soil structure and pedotransfer functions. Eur. J. Soil Sci. 54: 443–451.

PANDIT R., LABAND D.N. 2010: Energy savings from tree shade. Ecol. Econ. 69: 1324–1329.

Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Dz.U. 2002 nr 75, poz. 690 [Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions to be met by buildings and their location. Journal of Laws 2002 No 75, item 690].

SUCHOCKA M. 2016: Podłoże strukturalne [Structural background]. Specyfikacja techniczna dla Zarządu Inwestycji Miejskich w Łodzi, Łódź.

SUZUKI S., NOBLE A., RUAYSOONGNERN S., CHINABUT N. 2007: Improvement in Water-Holding Capacity and Structural Stability of a Sandy Soil in Northeast Thailand, Arid Land Research and Management 21 (1): 37–49.

US Forest Service n.d.: Trees. Retrieved from: https://www.fs.fed.us/learn/trees [access 28.05.2019].

WAGNER I., KRAUZE K. 2014: Jak bezpiecznie zatrzymać wodę opadową w mieście? Narzędzia techniczne [How to safely keep rainwater in the city? Technical tools]. In: T. Bergier, J. Kronenberg, I. Wagner (Eds.), Woda w mieście. Seria Zrównoważony Rozwój – Zastosowania 5. Fundacja Sędzimira, Warszawa: 75–93.

WARMIŃSKA M. 2016: Zwiększenie stopnia rezyliencji miasta poprzez zrównoważone gospodarowanie wodą opadową na przykładzie fragmentu dzielnicy Praga Północ [Increasing the degree of city resilience through sustainable rainwater management on the example of a fragment of the Praga Północ district]. MSc thesis. SGGW, Warszawa [typescript].

WELLE T., BIRKMANN J. 2015: The World Risk Index – An Approach to Assess Risk and Vulnerability on a Global Scale. J. Extreme Events 2. https://www.doi.org/10.1142/S2345737615500025

WOJNOWSKA-HECIAK M., JANUS A. 2016: Landscape solutions for small retention. Structure and Environment 27: 40–46.


Opublikowane : 2020-01-15


Wojnowska-HeciakM., SuchockaM., GrzebulskaB., & WarmińskaM. (2020). Use of structural soil as a method for increasing flood resilience in Praga Północ in Warsaw. Annals of Warsaw University of Life Sciences – SGGW. Horticulture and Landscape Architecture, (40), 15–28. Pobrano z https://ahorticulture.sggw.pl/index.php/hala/article/view/16

Magdalena Wojnowska-Heciak 
Faculty of Civil Engineering and Architecture, Kielce University of Technology  Polska
https://orcid.org/0000-0002-7043-9559
Marzena Suchocka 
Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW   Polska
https://orcid.org/0000-0002-0759-5348
Barbara Grzebulska 
Regional Environmental Centre (REC)  Polska
Marta Warmińska 
Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW  Polska