Selection for resistance to acequinocyl in Amblyseius andersoni (Chant) (Anactinotrichida: Phytoseiidae)



Abstract

Selection for resistance to acequinocyl in Amblyseius andersoni (Chant) (Anactinotrichida: Phytoseiidae). The majority of pesticides used in pest control in orchards are found to be harmful to beneficial arthropods. However, the development of resistant predators and parasitoids could contribute to their enhanced use in crops where the use of pesticides is necessary. The goal of the current work was to select a line of predatory mite Amblyseius andersoni resistant to acequinocyl acaricide belonging to a group of mitochondrial complex III electron transport inhibitors. A selective dose used in experiments was that causing 55–65% mortality of phytoseiid gravid females. A laboratory population had a nine-fold increase in resistance to acequinocyl after two selection cycles, and over 30-fold increase after four cycles. This selected population of A. andersoni also developed medium cross-resistance to fenpyroximate.


Keywords

predatory mites; pesticides; selection; acequinocyl; fenpyroximate

ABBOTT W. 1925: A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.

ANBER H.A.I., OVERMEER W.P.J. 1988: Resistance to organophosphates and carbamates in the predacious mite Amblyseius potentillae (Garman) due to insensitive acetylcholinesterase. Pestic. Biochem. Physiol. 31 (1): 91–98.

ANBER H.A.I, OPPENOORTH F.J. 1989: A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman). Pestic. Biochem. Physiol. 33 (3): 283–297.

BONAFOS R., SERRANO E., AUGER P., KREITER S. 2007: Resistance to delta-methrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Ambylseius andersoni (Chant) (Acari: Phytoseiidae) from vineyards in the south-west of France. Crop Prot. 26: 169–172.

CACCIA R., BAILLOD M., GUIGNARD E., KREITER S. 1985: Introduction d’une souehe de Amblyseius andersoni Chant resistant a l’azinphos, dans la lutte contre les acariens phyto-phages en viticulture. Rev. Suisse Vitic. Arboric. Hortic. 17: 285–290.

CROFT B.A., MESSING R.H., DUNLEY J.E., STRONG W.B. 1993: Effects of humidity on eggs and immatures of Neoseiulus fallacis, Amblysieus andersoni, Metaseiulus occidentalis and Typhlodromus pyri (Phytoseiidae): implications for biological control on apple, caneberry, strawberry and hop. Exp. Appl. Acarol., 17: 451–459.

DUSO C. 1992: Biological control of tetranychid mites in peach orchards of Northern Italy: role of Amblyseius andersoni (Chant) and Amblyseius finlandicus (Oud.) (Acari: Phytoseiidae). Acta Phytopathol. Hun. 27: 211–217.

FIEDLER Ż. 2009: Amblyseius andersoni (Chant) – nowa alternatywa w zwalczaniu przędziorków [Amblyseius andersoni (Chant) – a new alternative in spider mites control]. Pro. Plant Prot. 49: 1469–1473.

FOURNIER D., PRALAVORIO M., BERGE J.B., CUANY A. 1985: Pesticide Resistance in Phytoseiidae. In: W. Helle, M.W. Sabelis (Eds.), Spider mites their biology, natural enemies and control 1B. Elsevier, Amsterdam.

HAMMER Q., HARPER D.A.T., RYAN P.D. 2010: PAST, version 2.02. State Univ. of NY at Stony Brook (Program).

HOY M.A., BARNETT W.W., REIL W.O., CASTRO D., CAHN D., HENDRICKS L.C., COVIELLO R.L., BENTLEY W.J. 1982: Large-scale releases of pesticide-resistant spider mite predators. Calif. Agr. 36 (1): 8–10.

HULL LA. BEERS E.H. 1985: Ecological selectivity: Modifying Chemical Control Practices to Preserve Natural Enemies in Biological Control. In: M.A. Hoy, D.C. Herzog (Eds.), Agricultural IPM Systems. Academic Press, Orlando.

IORIATTI C., PASQUALINI E., TONIOLLI A. 1992: Effects of the fungicides mancozed and dithianon on mortality and reproduction of the predatory mite Amblyseius andersoni. Exp. Appl. Acarol. 15: 109–116.

IRIGARAY F.J.S.D.C., ZALOM F.G. 2006: Side effects of five new acaricides on the predator Galendromus occidentalis (Acari, Phytoseiidae). Exp. Appl. Acarol. 38: 299–305.

IVANCICH-GAMBARO P. 1986: An ecological study of Amblyseius andersoni Chant (Acarina: Phytoseiidae) in the climate of the Po Valley (North Italy). Long-term research on OP-resistant populations. Redia. 69: 555–572.

JAMES D.G. 2002: Selectivity of the acaricide, bifenazate, and aphicide, pymetrozine, to spider mite predators in Washington hops. Int. J. Acarol. 28: 175–179.

KIM S.S., SEO S.G. 2001: Relative toxicity of some acaricides to the predatory mite, Amblyseius womersleyi and the twospotted spider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Appl. Entomol. Zool. 36: 509–514.

KIM S.S., YOO S.S. 2002: Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae. BioControl 47: 563–573.

KINOSHITA S., KOURA Y., KARIYA H., OHSAKI N., WATANABE T. 1999: AKD-2023: a novel miticide. Biological activity and mode of action. J. Pestic. Sci. 55: 659–660.

KOVEOS D.S., BROUFAS G.D. 2000: Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Exp. Appl. Acarol. 24: 247–256.

LeOra Software 1994: PoloPC: A Users guide to Probit and Logit Analysis. LeOra Software, Berkley, CA.

McMURTRY J.A., CROFT B. 1997: Lifestyles of phytoseiid mites and their roles in biological control. Ann. Rev. Entomol. 42: 291–321.

NOMIKOU M., JANSSEN A., SCHRAAG R., SABELIS M.W. 2001: Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp. Appl. Acarol. 25: 271–291.

OVERMEER W.P.J., ZON van A.Q. 1981: A comparative study of the effect of some pesticides on three predacous mite species: Typhlodromus pyri, Amblyseius potentillae and A. bibens [Acarina: Phytoseiidae]. Entomophaga 26: 3–9.

PUCHALSKA E., PIOTROWSKA M. 2016: Side effects of acequinocyl on predatory

mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Commun. Biometr. Crop Sci. 11: 140–148.

RODRIGUES J.R., TORRES L.M. 2007: Field toxicity of four acaricides on the predatory mites Amblyseius andersoni (Chant) and Euseius stipulatus (Athias-Henriot) (Acari: Phytoseiidae) in apple orchard at Northwest of Portugal. Bulletin IOBC/WPRS 35: 143.

SALMAN S., AYDINLI F., AY R. 2015: Selection for resistance: Cross-resistance, inheritance, synergists and biochemical mechanisms of resistance to acequinocyl in Phytoseiulus persimilis A.H. (Acari: Phytoseiidae). Crop Prot. 67: 109–115.

SATO M., MIYATA T., KAWAI A., NAKANO O. 2000: Selection for resistance and susceptibility to methidathion and cross resistance in Amblyseius womersleyi Schicha (Acari: Phytoseidae). Appl. Etomol. Zool. 35: 393–399.

SOLOMON M.G., EASTERBROOK M.A., FITZGERALD J.D. 1993: Mite-management programs based on organophosphate-resistant Typhlodromus pyri in UK apple orchards. Crop Prot. 12: 249–254.

STOJNIĆ B., MLADENOWIĆ K., MARIĆ I., MARCIĆ D. 2014: Species complexes of predatory mites and spider mites (Acari: Phytoseiidae, Tetranychidae) on cultivated and wild apple trees in Serbia. Int. J. Acarol. 7: 485–492.

SZABO A., PENZES B. 2013: A new method for the release of Amblyseius andersoni (Acari: Phytoseiidae) in young apple orchards. Eur. J. Entomol. 110: 477–482.

TIWARI S.N. 2013: Reduced Risk Pesticides: The Best Alternative to Ensure Food Safety without Compromising Environment Quality. In: Proceedings of the 27th Training on Managing Plant Microbe Interactions for the Management of Soil-borne Plant Pathogens. Centre of Advanced Faculty Training in Plant Pathology.

ZALOM F.G., IRIGARAY F.J.S.D.C. 2010: Integrating pesticides and biocontrol of mites in agricultural systems. In: Trends in Acarology: Proceedings of the 12th International Congress. Springer, Dordrecht.

Download

Published : 2020-10-01


Ewa Puchalska. (2020). Selection for resistance to acequinocyl in Amblyseius andersoni (Chant) (Anactinotrichida: Phytoseiidae). Annals of Warsaw University of Life Sciences – SGGW. Horticulture and Landscape Architecture, (41), 17-27. Retrieved from https://ahorticulture.sggw.pl/index.php/hala/article/view/33

Ewa Puchalska